FoRex Trading Using Supervised Machine Learning
نویسندگان
چکیده
منابع مشابه
Autonomous Forex Trading Agents
In this paper we describe an infrastructure for implementing hybrid intelligent agents with the ability to trade in the Forex Market without requiring human supervision. This infrastructure is composed of three modules. The “Intuition Module”, implemented using an Ensemble Model, is responsible for performing pattern recognition and predicting the direction of the exchange rate. The “A Posterio...
متن کاملAutomated Options Trading Using Machine Learning
We summarize an experimental study on the viability of several call option trading strategies that rely on our earlier work with machine-learning-based detection and prediction of heightened volatility periods. The proposed trading strategies makes use of the connection between call options prices and volatility in the underlying.1,2 As part of these strategies, the trader would purchase call o...
متن کاملAutotagging Music Using Supervised Machine Learning
Social tags are an important component of “Web2.0” music recommendation websites. In this paper we propose a method for predicting social tags using audio features and supervised learning. These automatically-generated tags (or “autotags”) can furnish information about music that is untagged or poorly tagged. The tags can also serve to smooth the tag space from which similarities and recommenda...
متن کاملEvaluation Method of Forex Trading Analysis Tool
FOREX (Foreign Currency Exchange) is concerned with the exchange rates of foreign currencies compared to one another. These rates provide significant data necessary for currency trading in the international monetary markets. FOREX rates are impacted by a variety of factors including economic and political events, and even the psychological state of individual traders and investors. These factor...
متن کاملUsing machine learning for medium frequency derivative portfolio trading
We use machine learning for designing a medium frequency trading strategy for a portfolio of 5 year and 10 year US Treasury note futures. We formulate this as a classification problem where we predict the weekly direction of movement of the portfolio using features extracted from a deep belief network trained on technical indicators of the portfolio constituents. The experimentation shows that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering & Technology
سال: 2018
ISSN: 2227-524X
DOI: 10.14419/ijet.v7i4.15.23024